Advertisement

Comparison of intravascular ultrasound and multidimensional contrast imaging modalities for characterization of chronic occlusive iliofemoral venous disease: A systematic review

      Abstract

      Background

      Techniques to diagnose and treat chronic iliofemoral venous obstruction (CIVO) have continued to evolve. Intravascular ultrasound (IVUS) displays real-time cross-sectional venous anatomy and can be used to guide venous interventions. However, being invasive, it is not a suitable initial screening tool. The comparison of IVUS with other three-dimensional contrast imaging modalities is less well documented. We have provided a systematic analysis of the performance of IVUS and other three-dimensional contrast imaging modalities for the evaluation of CIVO.

      Methods

      A search of various databases, including MEDLINE, Embase, EBSCOhost, Cochrane Library, CINAHL PLUS, and Web of Science, was conducted to identify studies that had compared IVUS and at least one other multidimensional contrast imaging modality, including multiplanar venography, computed tomography venography (CTV), computed tomography angiography, or magnetic resonance venography in the evaluation of CIVO.

      Results

      A total of 2117 articles were screened. Of these, eight met the inclusion criteria. Additionally, 12 other studies were identified that had compared IVUS and single plane venography. A meaningful meta-analysis could not be conducted owing to data heterogeneity. The quality of evidence varied from very low to low. IVUS identified stenotic lesions in 0% to 30% more patients compared with multiplanar venography. The CTV and IVUS measurements correlated well with each other. The sensitivity of the two-segment CTV technique approached 97%. The specificity of CTV was 57% to 86% and varied with the venous segment. The sensitivity and specificity of magnetic resonance venography compared with IVUS was 100% and 22.7%, respectively.

      Conclusions

      Given that IVUS is considered the reference standard used to guide venous interventions in patients with CIVO, the use of venography, despite using multiple projection views, underestimates the severity and presence of venous stenosis and should not be used as the only diagnostic modality. Three-dimensional CTV is noninvasive with a high sensitivity. It can be used to screen patients who might benefit from a more invasive investigation with IVUS. CTV can also be considered for the preoperative planning of venous interventions in patients with CIVO.

      Keywords

      To read this article in full you will need to make a payment
      SVS Member Login
      Society Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gagne P.J.
        • Tahara R.W.
        • Fastabend C.P.
        • Dzieciuchowicz L.
        • Marston W.
        • Vedantham S.
        • et al.
        Venography versus intravascular ultrasound for diagnosing and treating iliofemoral vein obstruction.
        J Vasc Surg Venous Lymphat Disord. 2017; 5: 678-687
        • Gagne P.J.
        • Gasparis A.
        • Black S.
        • Thorpe P.
        • Passman M.
        • Vedantham S.
        • et al.
        Analysis of threshold stenosis by multiplanar venogram and intravascular ultrasound examination for predicting clinical improvement after iliofemoral vein stenting in the VIDIO trial.
        J Vasc Surg Venous Lymphat Disord. 2018; 6: 48-56.e1
        • Murphy E.H.
        • Johnson E.D.
        • Arko F.R.
        Evaluation of wall motion and dynamic geometry of the inferior vena cava using intravascular ultrasound: implications for future device design.
        J Endovasc Ther. 2008; 15: 349-355
        • Saleem T.
        • Knight A.
        • Raju S.
        Diagnostic yield of intravascular ultrasound in patients with clinical signs and symptoms of lower extremity venous disease.
        J Vasc Surg Venous Lymphat Disord. 2020; 8: 634-639
        • Choi K.H.
        • Song Y.B.
        • Lee J.M.
        • Lee S.Y.
        • Park T.K.
        • Yang J.H.
        • et al.
        Impact of intravascular ultrasound-guided percutaneous coronary intervention on long-term clinical outcomes in patients undergoing complex procedures.
        JACC Cardiovasc Interv. 2019; 12: 607-620
        • Buckley C.J.
        • Arko F.R.
        • Lee S.
        • Mettauer M.
        • Little D.
        • Atkins M.
        • et al.
        Intravascular ultrasound scanning improved long-term patency of iliac lesions treated with balloon angioplasty and primary stenting.
        J Vasc Surg. 2002; 35: 316-323
        • Jayaraj A.
        • Raju S.
        Three-dimensional computed tomography venogram enables accurate diagnosis and treatment of patients presenting with symptomatic chronic iliofemoral venous obstruction.
        J Vasc Surg Venous Lymphat Disord. 2021; 9: 73-80.e1
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • PRISMA Group
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        Ann Intern Med. 2009; 151 (W64): 264-269
        • Higgins J.P.
        • Altman D.G.
        • Gøtzsche P.C.
        • Jüni P.
        • Moher D.
        • Oxman A.D.
        • et al.
        • Cochrane Bias Methods Group; Cochrane Statistical Methods Group
        The Cochrane Collaboration's tool for assessing risk of bias in randomised trials.
        BMJ. 2011; 343: d5928
        • Schünemann H.J.
        • Oxman A.D.
        • Brozek J.
        • Glasziou P.
        • Bossuyt P.
        • Chang S.
        • et al.
        GRADE: assessing the quality of evidence for diagnostic recommendations.
        Evid Based Med. 2008; 13: 162-163
        • Sang H.F.
        • Li J.H.
        • Du X.L.
        • Li W.D.
        • Lei F.R.
        • Yu X.B.
        • et al.
        Diagnosis and endovascular treatment of iliac venous compression syndrome.
        Phlebology. 2019; 34: 40-51
        • Raju S.
        • Walker W.
        • Noel C.
        • Kuykendall R.
        • Jayaraj A.
        The two-segment caliber method of diagnosing iliac vein stenosis on routine computed tomography with contrast enhancement.
        J Vasc Surg Venous Lymphat Disord. 2020; 8: 970-977
        • Rossi F.H.
        • Kambara A.M.
        • Rodrigues T.O.
        • Rossi C.B.O.
        • Izukawa N.M.
        • Pinto I.M.F.
        • et al.
        Comparison of computed tomography venography and intravascular ultrasound in screening and classification of iliac vein obstruction in patients with chronic venous disease.
        J Vasc Surg Venous Lymphat Disord. 2020; 8: 413-422
        • Rossi F.H.
        • Kambara A.M.
        • Izukawa N.M.
        • Rodrigues T.O.
        • Rossi C.B.
        • Sousa A.G.
        • et al.
        Randomized double-blinded study comparing medical treatment versus iliac vein stenting in chronic venous disease.
        J Vasc Surg Venous Lymphat Disord. 2018; 6: 183-191
        • Kusiak A.
        • Budzyński J.
        Usefulness of non-contrast-enhanced magnetic resonance imaging prior to venous interventions.
        Postepy Kardiol Interwencyjnej. 2019; 15: 338-344
        • Shammas N.W.
        • Shammas G.A.
        • Jones-Miller S.
        • Radaideh Q.
        • Winter A.R.
        • Shammas A.N.
        • et al.
        Predicting iliac vein compression with computed tomography angiography and venography: correlation with intravascular ultrasound.
        J Invasive Cardiol. 2018; 30: 452-455
        • Massenburg B.B.
        • Himel H.N.
        • Blue R.C.
        • Marin M.L.
        • Faries P.L.
        • Ting W.
        Magnetic resonance imaging in proximal venous outflow obstruction.
        Ann Vasc Surg. 2015; 29: 1619-1624
        • Raju S.
        • Davis M.
        Anomalous features of iliac vein stenosis that affect diagnosis and treatment.
        J Vasc Surg Venous Lymphat Disord. 2014; 2: 260-267
        • Ascher E.
        • Eisenberg J.
        • Bauer N.
        • Marks N.
        • Hingorani A.
        • Rizvi S.
        The bull’s eye sign and other suprainguinal venographic findings to limit the use of intravascular ultrasound in patients with severe venous stasis.
        J Vasc Surg Venous Lymphat Disord. 2017; 5: 70-74
        • Raju S.
        • Furrh J.B.I.V.
        • Neglén P.
        Diagnosis and treatment of venous lymphedema.
        J Vasc Surg. 2012; 55: 141-149
        • Raju S.
        • Kirk O.K.
        • Jones T.L.
        Endovenous management of venous leg ulcers.
        J Vasc Surg Venous Lymphat Disord. 2013; 1: 165-172
        • Neglén P.
        • Raju S.
        Intravascular ultrasound scan evaluation of the obstructed vein.
        J Vasc Surg. 2002; 35: 694-700
        • Montminy M.L.
        • Thomasson J.D.
        • Tanaka G.J.
        • Lamanilao L.M.
        • Crim W.
        • Raju S.
        A comparison between intravascular ultrasound and venography in identifying key parameters essential for iliac vein stenting.
        J Vasc Surg Venous Lymphat Disord. 2019; 7: 801-807
        • Gagne P.J.
        • Gagne N.
        • Kucher T.
        • Thompson M.
        • Bentley D.
        Long-term clinical outcomes and technical factors with the Wallstent for treatment of chronic iliofemoral venous obstruction.
        J Vasc Surg Venous Lymphat Disord. 2019; 7: 45-55
        • Raju S.
        • Neglen P.
        High prevalence of nonthrombotic iliac vein lesions in chronic venous disease: a permissive role in pathogenicity.
        J Vasc Surg. 2006; 44 (discussion: 144): 136-143
        • Raju S.
        • Oglesbee M.
        • Neglén P.
        Iliac vein stenting in postmenopausal leg swelling.
        J Vasc Surg. 2011; 53: 123-130
        • Raju S.
        • Darcey R.
        • Neglén P.
        Unexpected major role for venous stenting in deep reflux disease.
        J Vasc Surg. 2010; 51 (discussion: 408): 401-408
        • Lau I.
        • Png C.Y.M.
        • Eswarappa M.
        • Miller M.
        • Kumar S.
        • Tadros R.
        • et al.
        Defining the utility of anteroposterior venography in the diagnosis of venous iliofemoral obstruction.
        J Vasc Surg Venous Lymphat Disord. 2019; 7: 514-521.e4
        • Rollo J.C.
        • Farley S.M.
        • Oskowitz A.Z.
        • Woo K.
        • DeRubertis B.G.
        Contemporary outcomes after venography-guided treatment of patients with May-Thurner syndrome.
        J Vasc Surg Venous Lymphat Disord. 2017; 5: 667-676.e1
        • Forauer A.R.
        • Gemmete J.J.
        • Dasika N.L.
        • Cho K.J.
        • Williams D.M.
        Intravascular ultrasound in the diagnosis and treatment of iliac vein compression (May-Thurner) syndrome.
        J Vasc Interv Radiol. 2002; 13: 523-527
        • Neglén P.
        • Thrasher T.L.
        • Raju S.
        Venous outflow obstruction: an underestimated contributor to chronic venous disease.
        J Vasc Surg. 2003; 38: 879-885
        • Raju S.
        • Owen Jr., S.
        • Neglen P.
        The clinical impact of iliac venous stents in the management of chronic venous insufficiency.
        J Vasc Surg. 2002; 35: 8-15
        • Bolz K.D.
        • Myhre H.O.
        • Angelsen B.A.
        • Nordby A.
        Intravascular ultrasonography: normal and pathologic findings in the great veins.
        Acta Radiol. 1993; 34: 329-334
        • Ahmed H.K.
        • Hagspiel K.D.
        Intravascular ultrasonographic findings in May-Thurner syndrome (iliac vein compression syndrome).
        J Ultrasound Med. 2001; 20: 251-256
        • Marteslo J.P.
        • Makary M.S.
        • Khabiri H.
        • Flanders V.
        • Dowell J.D.
        Intravascular ultrasound for the peripheral vasculature—current applications and new horizons.
        Ultrasound Med Biol. 2020; 46: 216-224
        • Thakrar P.D.
        • Petersen B.D.
        • Kaufman J.A.
        Intravascular ultrasound for transvenous interventions.
        Tech Vasc Interv Radiol. 2013; 16: 161-167
        • Clair D.
        Pros and cons for intravascular ultrasound in stenting.
        Phlebology. 2013; 28: 129-134
        • McLafferty R.B.
        The role of intravascular ultrasound in venous thromboembolism.
        Semin Intervent Radiol. 2012; 29: 10-15
        • Schleimer K.
        • Barbati M.E.
        • Grommes J.
        • Hoeft K.
        • Toonder I.M.
        • Wittens C.H.A.
        • et al.
        Update on diagnosis and treatment strategies in patients with post-thrombotic syndrome due to chronic venous obstruction and role of endovenous recanalization.
        J Vasc Surg Venous Lymphat Disord. 2019; 7: 592-600
        • Duran C.
        • Abboud L.
        • Karmonik C.
        • Shah D.
        • Lumsden A.B.
        • Bismuth J.
        The utility of dynamic magnetic resonance venography in the setting of pelvic venous pathology.
        J Vasc Surg Venous Lymphat Disord. 2013; 1: 78-81.e1
        • Lee J.T.
        • Fang T.D.
        • White R.A.
        Applications of intravascular ultrasound in the treatment of peripheral occlusive disease.
        Semin Vasc Surg. 2006; 19: 139-144
        • Wittens C.H.A.
        Invited commentary.
        J Vasc Surg Venous Lymphat Disord. 2017; 5: 687-688
        • Kibbe M.R.
        • Ujiki M.
        • Goodwin A.L.
        • Eskandari M.
        • Yao J.
        • Matsumura J.
        Iliac vein compression in an asymptomatic patient population.
        J Vasc Surg. 2004; 39: 937-943
        • Raju S.
        • Darcey R.
        • Neglén P.
        Iliac-caval stenting in the obese.
        J Vasc Surg. 2009; 50: 1114-1120
        • Köksoy C.
        • Bahçecioğlu İ.B.
        • Çetinkaya Ö.A.
        • Akkoca M.
        Iliocaval outflow obstruction in patients with venous ulcers in a small comparison study between patients with primary varicose veins and chronic deep vein disease.
        J Vasc Surg Venous Lymphat Disord. 2021; 9: 703-711
        • Kakkos S.K.
        • Black S.A.
        Assessment and interpretation of common iliac vein occlusive pathology.
        Eur J Vasc Endovasc Surg. 2020; 60: 126
        • Dzieciuchowicz Ł.
        • Krzyżański R.
        • Kruszyna Ł.
        • Krasinski Z.
        • Gabriel M.
        • Oszkinis G.
        The intravascular ultrasound morphometry of iliac veins in subjects without severe chronic venous insufficiency and its implications for treatment indications and stent size selection.
        Phlebology. 2020; 35: 354-360
        • Raju S.
        • Buck W.J.
        • Crim W.
        • Jayaraj A.
        Optimal sizing of iliac vein stents.
        Phlebology. 2018; 33: 451-457
        • Gillespie D.L.
        Invited commentary.
        J Vasc Surg Venous Lymphat Disord. 2017; 5: 676-677
        • Neglén P.
        Chronic deep venous obstruction: definition, prevalence, diagnosis, management.
        Phlebology. 2008; 23: 149-157
        • Raju S.
        • Ward M.
        Utility of iliac vein stenting in elderly population older than 80 years.
        J Vasc Surg Venous Lymphat Disord. 2015; 3: 58-63
        • Lorenção de Almeida B.
        • Rossi F.H.
        • Guerra de Moraes Rego Sousa A.
        • Kambara A.M.
        • Izukawa N.M.
        • Beteli C.B.
        • et al.
        Correlation between venous pressure gradients and intravascular ultrasound in the diagnosis of iliac vein compression syndrome.
        J Vasc Surg Venous Lymphat Disord. 2018; 6: 492-499
        • Gaweesh A.S.
        • Kayed M.H.
        • Gaweesh T.Y.
        • Shalhoub J.
        • Davies A.H.
        • Khamis H.M.
        Underlying deep venous abnormalities in patients with unilateral chronic venous disease.
        Phlebology. 2013; 28: 426-431
        • Silickas J.
        • Black S.A.
        • Phinikaridou A.
        • Gwozdz A.M.
        • Smith A.
        • Saha P.
        Use of computed tomography and magnetic resonance imaging in central venous disease.
        Methodist Debakey Cardiovasc J. 2018; 14: 188-195
        • Esposito A.
        • Charisis N.
        • Kantarovsky A.
        • Uhl J.F.
        • Labropoulos N.
        A comprehensive review of the pathophysiology and clinical importance of iliac vein obstruction.
        Eur J Vasc Endovasc Surg. 2020; 60: 118-125
        • Helyar V.G.
        • Gupta Y.
        • Blakeway L.
        • Charles-Edwards G.
        • Katsanos K.
        • Karunanithy N.
        Depiction of lower limb venous anatomy in patients undergoing interventional deep venous reconstruction—the role of balanced steady state free precession MRI.
        Br J Radiol. 2018; 91: 20170005
        • Montminy M.L.
        • Jayaraj A.
        • Raju S.
        A systematic review of the efficacy and limitations of venous intervention in stasis ulceration.
        J Vasc Surg Venous Lymphat Disord. 2018; 6: 376-398.e1
        • Toh M.R.
        • Damodharan K.
        • Lim M.
        • Yap C.
        • Chong T.T.
        • Tang T.Y.
        Computed tomography venography versus intravascular ultrasound in the diagnosis of iliofemoral vein stenosis.
        J Vasc Surg Venous Lymphat Disord. 2020; 8: 1122-1123
        • Neglen P.
        Invited commentary.
        J Vasc Surg Venous Lymphat Disord. 2018; 6: 191
        • Guyatt G.
        • Gutterman D.
        • Baumann M.H.
        • Addrizzo-Harris D.
        • Hylek E.M.
        • Phillips B.
        • et al.
        Grading strength of recommendations and quality of evidence in clinical guidelines: report from an American College of Chest Physicians task force.
        Chest. 2006; 129: 174-181